Nickel-responsive regulation of two novel Helicobacter pylori NikR-targeted genes.
نویسندگان
چکیده
Nickel is an essential transition metal for the survival of Helicobacter pylori in the acidic human stomach. The nickel-responsive transcriptional regulator HpNikR is important for maintaining healthy cytosolic nickel concentrations through the regulation of multiple genes, but its complete regulon and role in nickel homeostasis are not well understood. To investigate potential gene targets of HpNikR, ChIP sequencing was performed using H. pylori grown at neutral pH in nickel-supplemented media and this experiment identified HPG27_866 (frpB2) and HPG27_1499 (ceuE). These two genes are annotated to encode a putative iron transporter and a nickel-binding, periplasmic component of an ABC transporter, respectively. In vitro DNA-binding assays revealed that HpNikR binds both gene promoter sequences in a nickel-responsive manner with affinities on the order of ∼10(-7) M. The recognition sites of HpNikR were identified and loosely correlate with the HpNikR pseudo-consensus sequence (TATTATT-N11-AATAATA). Quantitative PCR experiments revealed that HPG27_866 and HPG27_1499 are transcriptionally repressed following growth of H. pylori G27 in nickel-supplemented media, and that this response is dependent on HpNikR. In contrast, iron supplementation results in activation of HPG27_1499, but no impact on the expression of HPG27_866 was observed. Metal analysis of the Δ866 strain revealed that HPG27_866 has an impact on nickel accumulation. These studies demonstrate that HPG27_866 and HPG27_1499 are both direct targets of HpNikR and that HPG27_866 influences nickel uptake in H. pylori.
منابع مشابه
In vitro analysis of protein-operator interactions of the NikR and fur metal-responsive regulators of coregulated genes in Helicobacter pylori.
Two important metal-responsive regulators, NikR and Fur, are involved in nickel and iron homeostasis and controlling gene expression in Helicobacter pylori. To date, they have been implicated in the regulation of sets of overlapping genes. We have attempted here dissection of the molecular mechanisms involved in transcriptional regulation of the NikR and Fur proteins, and we investigated protei...
متن کاملThe Nickel-Responsive Binding and Regulation of Two Novel Helicobacter pylori NikR–Targeted Genes
ii Acknowledgments iii Table of Contents iv List of Abbreviations v List of Tables vi List of Figures vii 1. Introduction 1 1.1 Nickel in the environment 1 1.2 Helicobacter pylori and metalloregulation 1 1.3 Helicobacter pylori NikR 3 1.4 Purpose of Study 5 2. Experimental 6 2.1 Materials 6 2.2 Methods 6 3. Results 15 3.1 HpNikR Purification and Characterization 15 3.2 Identifying and analyzing...
متن کاملAcid-induced activation of the urease promoters is mediated directly by the ArsRS two-component system of Helicobacter pylori.
The nickel-containing enzyme urease is an essential colonization factor of the human gastric pathogen Helicobacter pylori which enables the bacteria to survive the low-pH conditions of the stomach. Transcription of the urease genes is positively controlled in response to increasing concentrations of nickel ions and acidic pH. Here we demonstrate that acid-induced transcription of the urease gen...
متن کاملThe nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori.
The NikR protein is a nickel-dependent regulatory protein which is a member of the ribbon-helix-helix family of transcriptional regulators. The gastric pathogen Helicobacter pylori expresses a NikR ortholog, which was previously shown to mediate regulation of metal metabolism and urease expression, but the mechanism governing the diverse regulatory effects had not been described until now. In t...
متن کاملNickel represses the synthesis of the nickel permease NixA of Helicobacter pylori.
Nickel acquisition is necessary for urease activity, a major virulence factor of the human gastric pathogen Helicobacter pylori. NixA was identified as a specific nickel uptake system in this organism. Addition of small amounts of nickel to media strongly stimulates urea hydrolysis. On the other hand, high nickel concentrations are deleterious to cell growth. As a possible protective reaction, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metallomics : integrated biometal science
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2015